Targeted virus replication plus immunotherapy eradicates primary and distant pancreatic tumors in nude mice.
نویسندگان
چکیده
Pancreatic cancer is an aggressive neoplasm with no current viable, effective treatment options. In the majority of cases, at first diagnosis, pancreatic cancer has already become metastatic so that conventional treatment regimens provide minimal, if any, clinical benefit in prolonging life or ameliorating the negative prognosis of this disease. These harsh realities underscore the need for developing improved treatment paradigms for this cancer, with gene therapy and immunotherapy currently being evaluated as potential therapeutic options. We currently describe an adenovirus-based therapy for successfully managing pancreatic cancer, the cancer terminator virus (CTV), which is founded on targeted induction of viral replication from a cancer-specific progression elevated gene-3 (PEG-3) promoter (PEG-Prom) and immune modulation by IFN-gamma. The PEG-Prom functions selectively in cancer cells of diverse lineages compared with their normal cellular counterparts. In the CTV, the PEG-Prom drives expression of the adenoviral early region 1A (E1A) gene, necessary for virus replication, with IFN-gamma simultaneously being expressed from the E3 region. Infection of normal cells and pancreatic cancer cells with the CTV confirmed cancer cell-selective adenoviral replication, robust IFN-gamma production coupled with virus replication, growth inhibition, and apoptosis induction. Infection of established pancreatic tumors in nude mice with the CTV promoted viral replication, IFN-gamma production, and activation of antitumor immunity resulting in complete eradication of both primary and distant tumors, curing animals of disease. The CTV provides a novel reagent for treating pancreatic and other human cancers with potential for eliminating both primary tumors and metastatic disease.
منابع مشابه
Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice.
Limitations of current viral-based gene therapies for malignant tumors include lack of cancer-specific targeting and insufficient tumor delivery. To ameliorate these problems and develop a truly effective adenovirus gene-based therapy for cancer, we constructed a conditionally replication competent adenovirus (CRCA) manifesting the unique properties of tumor-specific virus replication in combin...
متن کاملEffective treatment of pancreatic cancer xenografts with a conditionally replicating virus derived from type 2 herpes simplex virus.
PURPOSE Pancreatic cancer is a devastating disease that is almost universally fatal because of the lack of effective treatments. We recently constructed a novel oncolytic virus (FusOn-H2) from the type 2 herpes simplex virus. Because the replication potential of FusOn-H2 depends on the activation of the Ras signaling pathway, we evaluated its antitumor effect against pancreatic cancer, which of...
متن کاملAdenovirus for Cancer Therapy
Yu, D. 2013. Adenovirus for Cancer Therapy: With a Focus on its Surface Modification. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 914. 59 pp. Uppsala. ISBN 978-91-554-8700-3. Adenovirus serotype 5 (Ad5) is widely used as an oncolytic agent for cancer therapy. However, its infectivity is highly dependent on the expression ...
متن کاملRegression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68.
Oncolytic virotherapy of tumors has shown promising results in both preclinical and clinical studies. Here, we investigated the therapeutic efficacy of a replication-competent vaccinia virus, GLV-1h68, against human pancreatic carcinomas in cell cultures and in nude mice. We found that GLV-1h68 was able to infect, replicate in, and lyse tumor cells in vitro. Virus-mediated marker gene expressio...
متن کاملDevelopment of a regulatable oncolytic herpes simplex virus type 1 recombinant virus for tumor therapy.
Oncolytic viruses are genetically modified viruses that preferentially replicate in host cancer cells, leading to the production of new viruses and, ultimately, cell death. Currently, no oncolytic viruses that are able to kill only tumor cells while leaving normal cells intact are available. Using T-REx (Invitrogen, Carlsbad, CA) gene switch technology and a self-cleaving ribozyme, we have cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 19 شماره
صفحات -
تاریخ انتشار 2005